
"Virtual user" attack to distributed machine learning∗
†

ABSTRACT
Nowadays deep learning method is becoming more and more pop-
ular. It shows power on image classification with high precision .
Recently, commercial companies such as Google and Amazon have
built some deep learning service platforms. Users upload their data
to the platform and raise their requirements, then the platform
automatically trains a model to help users make decisions.

But this will bring some security issues. The users’ sensitive data
will be exposed to the company. In order to solve this problem,
at CCS’15 Shokri and Shmatikov proposed a distributed training
method that allows multiple users to collaboratively train a model.
Users only need to upload a part of parameters without revealing
their sensitive data to the company, which protects users’ privacy.

However, we find that even in the case of distributed training,
there is still potential possibility of sensitive data leakage. We pro-
pose a "virtual user" attack. When the company is malicious, it can
apply this kind of attack acquiring the users’ sensitive data, even
without being noticed by users. We show that the sensitive data
can be stolen including passwords, private photos and even more
important information. It may causes great hidden trouble to the
data security of users and reputation of commercial companies.
Later, we propose a "finetune" training method to perfectly defend
against this attack, which only takes a little extra time of users. We
hope our article will serve as a warning to the public.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; Dis-
tributed systems security;

KEYWORDS
Deep learning; Privacy; Attack; Defense

1 INTRODUCTION
Deep learning is a branch of machine learning technique. It takes
advantage of a large number of statistical information and has
shown amazing accuracy in the fields of session recognition, image
recognition and object detection. Compared with previous statisti-
cal learning methods, deep learning technology has a huge amount
of parameters and needs a lot of computation. It has extremely high
requirements on the computing power of the machine. Usually we
need to use GPU to perform calculations, but the high price of GPU
is unbearable for common users.

For this reason, commercial companies have launched many
profitable platforms using deep learning method, which enable
common users to use large companies’ GPUs. After gathering the
data uploaded by the users, through online calculation, the platform
builds an accurate model for users. For example, if a user uploads

∗
†

some animal pictures, the platformwill return a classification model
to the user to identify various species of animals.

However, the data security has become the focus of attention.
Here are some security issues that may arise from the centralized
training platform. For example, the leakage of people’s ID number
may cause property damage.

In this case, Shokri and Shmatikov propose a distributed training
approach[10]. In the distributed training scenario, users do not
need to upload data to the platform. They only need to train with
their own data locally, randomly upload certain parameters to the
platform, and download some parameters to update their local
neural network. Finally users can get a model with high degree of
accuracy. They can use all users’ data to train a more powerful and
ubiquitous model without exposing their local data to each other.
Therefore, the distributed training method has quickly become
focus of attention because it has two obvious advantages:

1.It can protect data privacy.
2. multiple users make full use of their data and train a more

powerful model.
However, we find that this distributed training method has great

security risks. We propose an attack method to obtain sensitive data
of users in this case. Our attack takes advantage of GAN. Its main
purpose is to generate fake data most like real data. The basic frame-
work of the original GAN model consists of a generative model and
a discriminative model. The initial input of Generator is a random
noise signal and the purpose of Generator is to produce data as
real as possible. The discriminator outputs a probability, indicating
the confidence of whether the input is real or fake data. The two
models are trained synchronously to improve each other’s perfor-
mance. When finally discriminator cannot distinguish between the
real data and the generated data, the generator is considered to be
optimal.

In view of the distributed training mentioned above, we propose
a "virtual user" attack. We show that if a company who provides
a distributed training platform is malicious, it can build a "virtual
user" and uses some special initialization to disguise it, which en-
ables it to be added to real users set and train a model together.
During that, we use GAN to generate sensitive data of users. We
use the obtained model as a discriminator to determine whether
the data we generate is the users’ sensitive data, and ultimately get
some data similar to users’. Here we emphasize that although there
are some data encryption measures, such as secure multi-party com-
puting, homomorphic encryption, etc. can make the transmitted
information completely invisible. As we know that in practical ap-
plications, due to the huge amount of data of deep learning, which
puts extremely high requirements on communication technology,
any encryption method cannot be applied in practice. Therefore,
the attack we have proposed is completely plausible.

This kind of attack is difficult to be noticed by users. First, in the
training process, although our attack adds a "virtual user", it neither
significantly increases the training time nor obviously causes a rise



in memory consumption. Furthermore, after the training is com-
pleted, the users can still get a usable model. Compared with the
model trained when the "virtual user" attack is not implemented,
the accuracy and user experience will not significantly change.
Therefore, the attack we proposed is covert and not easy to be de-
tected by users. In conclusion, it may cause serious privacy leakage
unconsciously.

Then we propose a defense measure, here we take advantage
of the "finetune" training method. The "finetune" method is one of
the transfer learning methods. It is often the case that a previously
trained model (generally, this model is based on a larger dataset)
is used for current mission requirements(a smaller dataset). In the
field of deep learning, because the process of training is complex,
training from scratch usually takes a long time, so training with
finetune can save a lot of time.

Our defense is inspired by the "finetune" training method. It can
effectively reduce the accuracy of the above "virtual user" attack.
The main process is as follows: the users perform certain process on
the data in advance (for example, lowering the pixels of the image),
train it as real data, and obtain a model from distributed learning.
After downloading the model, users perform "finetune" method on
it. Because the training data is pre-processed, this will make the
"virtual user" model inaccurate, ultimately the malicious company
can only obtain fake data. Thus we perfectly protect users’ sensitive
data from being leaked to the malicious companies.

We emphasize that our "finetune" method does not significantly
increase the training time consumption. Since users have already
done major training process on the platform, they only need to do
a little local fine-tuning with real data. Therefore,the defense we
propose are feasible.

Here we make a summary, the main contributions of our article
are:

1. For distributed training system, we propose a potential threat
that companies can apply a "virtual user" attack to acquire user’s
sensitive data.

2. We propose a "finetune" defense that allows users to protect
their data and avoid the privacy leakage. And this approach does
not significantly increase the cost of time.

2 RELATEDWORK
2.1 Distributed training
In the research field of machine learning privacy, Reza Shokri pro-
posed a distributed training approach that allows users to train a
model together without exposing data to the company[10]. The dis-
tributed training approach can get a model with excellent precision,
which not only protects the user’s privacy, but also allows model
to be shared among users. Users even do not have to truly "see" the
sensitive data.

Given the scenario of distributed training, BrilandHitaj [6]proposed
that although the distributed method well protects the user’s sensi-
tive data from the company, there is still a potential threat: If a user
is malicious, he can destroy the model by deliberately uploading
"fake" data, and obtain sensitive data of other users.

Later, in the case of distributed training, Le Trieu Phong[1] pro-
posed a potential threat, claiming that despite of the distributed
training method, malicious platform can still obtain users’ sensitive

data without being perceived by users. They further proposed a
method of homomorphic encryption, which can completely elimi-
nate this malicious attack and protect users’ sensitive data. How-
ever, we point out again that the current homomorphic encryption
method cannot be applied to the actual scene due to excessive time
cost.

2.2 Machine learning privacy
In the field of privacy inference of machine learning model, there
have been a series of works proposed in recent years. These tasks
are mainly divided into two aspects, the black box (the attacker
does not know the parameters inside the model and can only access
the API) and the white box (the attacker knows the parameters
inside the model).

At S&P’ 17, Reza Shokri[11] proposed an overfitting model could
lead to the disclosure of sensitive data. In addition, At CCS’16
Michael Backes [2]proposed that the model of RNA sequence con-
struction will lead privacy leakage due to certain parameters of
the model, they proposed two effective attack methods and gave
defense. Also,At CCS’15 Matt Fredrikson[3] demonstrate how the
trust information returned by many machine learning models is
exploited by "model inversion" attacks and infers the user’s personal
information. Furthermore, At CCS’17 Congzheng Song [12]proposed
several methods for inferring sensitive data through parameters of
neural networks. At last, At USENIX Security’14 Matthew Fredrik-
son [4]proposed that the model used in warfarin therapy would
pose a threat to the patient’s genomic privacy.

2.3 Generative adversarial network
Ian Goodfellow [5]proposed the generative adversarial network.
The GAN contains twomodels: a generative model and a discrimina-
tive model. The generator learns how to generate deceptive pictures
through the feedback of the discriminator. It has broad prospects in
the field of unsupervised learning. Alec Radford [8]proposed DC-
GAN that convolutional network is introduced into the generator
and some improvements are put forward to ensure the stability of
training. Augustus Odena [7]proposed SSGAN which apply labeled
data to GAN method for semi-supervised learning. At the same
time Salimans [9] proposed some helpful tricks for GAN.

3 BACKGROUND
3.1 Deep learning
Deep learning originates from neural network technology. It con-
sists of multilayer perceptron. which connects the input data to the
output. For example, input information is some images and output
is categories. Each connection between neurons has a weight. A
neural network training algorithm is to adjust the weight to the
best value ensuring the prediction of the entire network is optimal.

In a multi-layer perceptron, we use a to represent the input and
w to represent the weight. There is also a bias b, which is connected
to all neurons of the next layer. The neural network calculates the
value of the neurons in the next layer by multiplying the value in
the previous layer by the weight w and adding the bias b. Each
neuron must be applied with an activation function Leaky RELU.
We use the largest value output in the last layer as the highest
confidence category.

2



Then, we measure the accuracy of the model by calculating the
LOSS function. The LOSS function is obtained by calculating the
difference between the output in the last layer and the standard
output, usually with a cross entropy function. Then we use the back-
propagation algorithm to calculate the partial derivative of LOSS
relative to each neuron, which is the gradient. We apply gradient
descent algorithm and use this gradient to update the weights. The
above is the training process in an epoch. After that we continue
to apply the above algorithm to update the parameters and finally
get a classification model.

3.2 Distributed Privacy-Preserving Deep
Learning

At CCS’15, Reza Shokri proposed a distributed training approach.
There are two advantages of this training method.

1. Users can train a model without uploading data to the platform.
2. it enables each user to jointly train a more powerful and

ubiquitous model for everyone, making full use of everyone’s data.
First, all users need to agree on one neural network architecture,

including the inner parameters and API. In the first training section,
n users first train their own neural networks with their own data,
calculate the LOSS function, then get the partial derivative of each
weight, finally obtain the gradient of each neuron. Each user uploads
a portion of their gradients to the platform.

After the platform collects the gradients of the neurons sent by
each user, the largest one is selected among all the gradients of
each neuron and is returned to each user.

Receiving the gradient sent by the platform, each user updates
the neural weights with the obtained gradient, thereby obtaining a
new neural network after one training epoch.

The above is the details of one training epoch. After that, each
epoch is like the first epoch, continuously improves the accuracy
of the training model, finally obtains the user’s local model.

3.3 GAN attack method
Briland Hitaj proposed that in the distributed training scenario,
although a malicious platform could not get the users’ sensitive
data, if a user was malicious, he could infer the sensitive data of
other users through GAN.

GAN is inspired by the two-player game in game theory. The two
players in the GAN model is composed of a generative model and a
discriminative model. Generative model G captures the distribution
of sample data, and generates a fake sample as good as the real
sample; the discriminative model D is a classifier, which estimates
the probability that a sample is derived from the real data. If the
sample is from real training data, D outputs a large probability,
otherwise, D outputs a small probability. In the process of training,
one model parameter is fixed, the other model’s weight is updated.
In this process, both models try to optimize their networks to form a
competition until the two sides reach a dynamic equilibrium (Nash
equilibrium). Generative model G can be thought of as generating
exactly the same sample as real data. GAN try to optimize the
function as follow:

min
θG

max
θD

n+∑
i=1

loд f (xi ;θD ) +
n−∑
j=1

loд(1 − f (д(zj ;θG );θD ))

where xi and x j are relatively real data and fake data. f is Dis-
criminator and д is Generator. θD and θG are relatively the param-
eter of two networks.

Briland Hitaj [6] proposed that they can train a generative model
to generate sensitive data, and the user model obtained by dis-
tributed training can be used as a discriminator to optimize the
generator’s output. Their GAN method is a real-time attack be-
cause the Generator is trained synchronously with the distributed
learning.

Their method is similar to the way proposed by Augustus Odena
[7]and Salimans [9]. They modify the output layer from n to n + 1.
The additional output is where the "fake" data label is placed.

4 "VIRTUAL USER" ATTACK
In the situation of distributed deep learning method protecting the
users’ privacy, we find that although the platform cannot directly
obtain either the users’ data or the trained neural network, the
communication of parameters is processed through the platform.
In a specific situation, the malicious platform can still obtain the
users’ sensitive data, as shown in Figure 1. The attack process is as
follow.

As shown in Figure 1, we first assumed that there are n users
who jointly train a model on a distributed training platform. In the
training process, we take an epoch as an example. If the platform
wants to obtain the sensitive data of users, as users calculate the
gradient of all the neurons locally and upload a part of ∆weights,
the platform creates a "virtual user".

Then the platformmaliciously gives users some "too big" weights
as distributed ∆weights (here "too big" refers to more than two or-
ders of magnitude of the initial weights, for convenience here we as-
sume 1 relative to 0.01), then users download the artificial ∆weights
and the local neural network weights become very closed to 1. At
the same time, the platform sends "virtual user" the same "too big"
weights to the same neuron, randomly giving some weights to re-
maining neurons (as long as they are the same orders of magnitude
with common neural network). In this case, we have such an in-
tuition that the performance of this "virtual user" neural network
should be similar with the local neural network of users. (because
the most weights of the two neural networks are similar, and the
other weights are so small that their differences can be ignored
here). So our "virtual user" gets a neural network similar to the one
obtained by users locally.

The above is the description in one training epoch. In the later
training process, the malicious platform can be back to normal func-
tion, continues the work of calculating and distributing ∆weights
in the original agreement, and updates the "virtual user" parameter
in each epoch. This ensures its performance to be similar to the
neural network obtained by real users. Finally our "virtual user"
builds a model that behaves like real users’ model.

As wementioned before, there has been a series of work in recent
years, dedicated to inferring the data in the training set through
a machine learning model, whether it is a black box or a white

3



Figure 1: This is "virtual user" attack. n users train a model on a distributed training platform. The platform creates a"virtual
user", and maliciously gives users and "virtual user" some "too big" weights (here we assume 1 relative to 0.01). Because the
most weights of the two neural networks are similar and bigger, and the other weights are smaller and negligible, we can assert
the performance of this "virtual user" neural network should be similar with the real users’.

box (the difference is whether the parameters of neural network
can be known). For example, the model inversion method can be
used to attack the trained model. In this paper we apply the GAN
attack method proposed by Briland Hitaj to the model obtained by
our "virtual user" to get the training set data. (This is an obvious
intuition. Because the two models behave similarly, their training
set data should be similar). Our GAN method is implemented the
same as Briland Hitaj proposed. We treat the "virtual user" model
as Discriminator, training it synchronously with a Generator which
generate fake data. As the "virtual user" model becomes accurate
enough, our Generator can generate data similar to the real users.

5 PROOF OF ATTACK FEASIBILITY
Now let’s prove the feasibility of our attack which is based on an
intuition, namely if most weight values of two neural networks
are similar, then the two neural networks will behave similarly.
We use X = (X1,X2, ...,Xn ) to represent the neuron value of each

layer, and Xi = (Xi1 ,Xi2 , ...,Ximi
). n is the number of layers.m =

(m1,m2, ...,mn ) is the number of neurons in each layer.W is the
weight value, soWi j is the value of weight connecting neuron i
and neuron j. We also constructed a "virtual user" network with
slight error E = (E1,E2, ...,En ) of weights in each layer, and Ei =

(Ei1 ,Ei2 , ...Eimi
).W

′

and X
′

is the weight value and neuron value
of this "virtual user" network. Now we will estimate the output
error of the whole network by the error of ith layer weights.

At first we can calculate the jth neuron value of the i + 1th layer
Xi+1j :

X
′

i+1j =W
⊤
i j X

′

i =

mi∑
k=1

Wik jXik

Then we apply the "leaky RELU" active function to it:

4



{
X

′

i+1j =W
⊤
i j X

′

i , X
′

i+1j ≥ 0
X

′

i+1j = αW ⊤
i j X

′

i , X
′

i+1j < 0, (α < 1)
and the error of the jth neuron of i + 1 th layer is as follow:
(There is an explanation, we can ignore the α of leaky RELU

function, the reason we will say in the process of calculating the
whole error of this network)

∆Xi+1j = X
′

i+1j − Xi+1j =
mi∑
k=1

Eik jXik (1)

Thus we get the effect of the ith layer’s error on the jth neuron
of i + 1th layer, then we can calculate the effect of the ith layer’s
error on jth neuron of the last layer:

∆Xnj = X
′

nj − Xnj =

mn∑
k=1

mn−1∑
k=1
...

mi∑
k=1

Eik jXik

The effect of the 1th to ith layer’s error on jth neuron of the last
layer is:

∆Xnj =
n∑
i=1

mn∑
k=1

mn−1∑
k=1
...

mi∑
k=1

Eik jXik (2)

To calculate the output error, we apply the softmax function
to calculate the probability of ith category. To make the equation
clearer, we denote the value of last layer neuron isZ = (X1,X2, ...Xmn ) =

(Z1,Z2, ...,Zk ):

P(Zi ) =
eZi

k∑
j=1

eZ j

∆P(Zi ) = P(Zi )
′

− P(Zi ) =
eZi+∆Zi

k∑
j=1

eZ j+∆Zi

−
eZi

k∑
j=1

eZ j

We notice that since we’re dealing with upper bound of the final
output error, we want to make the numerator as large as possible
and the denominator as small as possible in the first term, while the
numerator is as small as possible and the denominator is as large as
possible in the second term. So we’re going to scale it up. For this
reason we can ignore the α of leaky RELU in equation (1). Notice
that α ≤ 1, we want to make the numerator larger and denominator
smaller, so we can ignore it to make the equation largest. We denote
the minimum of (Zi − ∆Zi ) is (Zl − ∆Zl ), and the maximum of Zi
is Zh :

∆P(Zi ) ≤
eZi+∆Zi

neZl−∆Zl
−

eZi

neZh

=
1
n
(
eZi+∆Zi

eZl−∆Zl
−

eZi

eZh
)

=
1
n
(e∆Zi e∆Zl eZi−Zl − eZi−Zh )

≤
1
n
e2∆Zi eZi−Zl −

1
n
eZi−Zh

(3)

It’s an upper bound of ∆P(Zi ). So we finally obtain the relation-
ship between the output error and the error of all the layer in the
neural network by substituting equation (2) into equation (3). We

know that the normal weight value is 10 to the minus 2 power or
less, so the final error caused by these errors is very small. We can
also make this conclusion by the following experiments. From this
we conclude that the effectiveness of our attacks is confirmed.

Here we ignore the convolution layer of the neural network.
Because as we know, the convolution layer is one kind of special full-
connected layer where some neurons have value of 0. Our deduction
includes this particular case, we can also see the experimental result
supports our idea.

Here we also ignore the max-pooling and zero-padding oper-
ation in common neural network. Because max-pooling collects
the biggest value in the target field of parameter matrix. Its upper
bound is the largest value in normal full-connected layers. The zero-
padding add zero to the margin of matrix, so the upper bound will
not change. Our deduction can perfectly includes the case where
max-pooling and zero-padding are applied. Our experiment can
confirm this claim.

Algorithm 1 "Virtual user" attack
1: set the initial weightw0
2: users train model on local dataset and get the gradient∆w0,

uploading to platform
3: platform selects some neurons and sends the "too big" weights

∆wt to the users
4: platform creates a virtual user and updates the gradient ∆wt
5: users update the local weightw1 with the gradient ∆wt
6: while training in n epoch,i = 1, 2...n do
7: users get the gradient ∆wi in local training , uploading to

platform
8: platform selects the largest ∆wi among all gradients as ∆w j

and sends it to the users
9: platform send ∆Wj to the "virtual user"
10: users use the gradient ∆w j issued by the platform to update

a new weightwi+1
11: end while

6 "FINETUNE" DEFENSE
In order to defend the above attack, we make use of a training
method called "finetune". Finetune is a kind of transfer learning
method, that is, in order to save training time and make up for
the defect of insufficient training data, the user does not directly
train the model from the scratch, but uses an already trained model
to retrain, which can greatly speed up the training process. Our
defense procedure is as follows.

First, each user needs to make an appointment on preprocessing
data by lowering a certain number of pixels, then uses the data
for distributed training. After downloading the trained model from
platform, we only need to finetune the model in original real dataset
to make it meet our requirements.

At the same time, we can find that because the dataset used for
distributed learning is not the original clearer dataset, but through
the pixel-reduce procedure, the "virtue user" attack method can not
obtain a sufficiently accurate network model. It will lead the attack
be ineffective.

5



Algorithm 2 "Finetune" defense
1: users agree on the initial weightw0
2: users reduce the pixel of the image
3: while training in n epoch,i = 1, 2...n do
4: users train locally to get the gradient ∆wi , upload to platform

5: platform selects the largest ∆w j among all gradients and
sends it to the users

6: users simultaneously uses the gradient issued by the platform
to obtain a new weightwi+1

7: end while
8: users locally perform a finetune operation on the obtained

model with own dataset to retrain the model

7 EXPERIMENT
7.1 Experiment Setup
7.1.1 Dataset. Weapply distributed trainingmethod to theMNIST
dataset, the Fashion-MNIST dataset and the notMNIST dataset.

MNIST (Mixed National Institute of Standards and Technology
database) is a computer vision dataset that contains 60,000 grayscale
images of handwritten Numbers from 0 to 9, each of which contains
28x28 pixels. It also has 10000 test images.

Fashion-MNIST dataset is an advanced version of MNIST dataset.
It consists of 10 categories clothes. The purpose of this dataset is to
replace MNIST as a good benchmark to evaluate machine learning
algorithms. In order to be compatible with MNIST, the format,
category, data amount, training and test set of FashionMNIST and
MNIST are completely consistent.

The notMNIST dataset is a set of image folders classified by
character, consisting of 10 folders A, B, C, D, E, F, G, H, I, J. Each
image has a dimension of 28X28. It is a more complicated dataset
which can replaces MNIST for more precise evaluation. We apply
some method to make its format the same as MNIST.

7.1.2 Discriminator architecture. Table 3-5 in appendix show
our neural network structure. Here we test multiple network struc-
tures, so we can obtain more comprehensive and reliable experi-
mental results. In these experiments, we set the learning rate=0.001,
momentum=0.9, active function as RELU function, and the convo-
lution kernel as 5X5.

7.1.3 Distributed training setting. We set up the distributed
learning platform by ourselves. We construct some users to train
their own data locally and upload their gradients during training,
as Shokri proposed. The server receives users’ gradients and selects
the biggest value of each neuron, then give back to users. users
update their model by the downloaded gradients. The operation of
"virtual user" is the same as real users.

In the "virtual user" attack, as we know the order of magnitude
of normal neural network weights is about 0.01, we set the "too big"
weight value about 1. because the weight value of neural network
had better fit normal distribution to ensure convergence, we sample
it from a normal distribution which has mean of 1. Then we impose
the "too big" weight to users’ model.

7.1.4 Generator architecture. Table 6 in appendix shows our
Generator structure. It is trained synchronously with the "virtual
user" model when users perform distributed learning method.

7.1.5 GAN attack setting. We set up the GAN attack similar to
Briland Hitaj proposed. We modify the output layer from 10 to 11,
the additional output is where the "fake" label is placed. Then we
train a Generator by minimizing the probability Discriminator put
generated data to fake label.

Table 1:Model Accuracy

dataset "virtual user" real user
MNIST 97.39% 98.01%
Fashion-MNIST 87.21% 89.10%
notMNIST 92.23% 92.31%

7.2 "Virtual user" attack
Table 1 show our "virtual user" attack model accuracy. First, we set
up multiple users to train a model together on a distributed training
platform. The platform creates a "virtual user" and maliciously gives
users some "too large" weights. In the experiment, our malicious
weights’ order of magnitude is about 1, while the real weights’ order
of magnitude is about 0.01. At the same time, the platform gives
"virtual user" the "too big" weights to the same neurons, randomly
giving weights of 0.01 order of magnitude to the remaining neurons.
The above is description of the first training epoch. After the first
epoch, the malicious platform can work normally, maintain the
work of weights distribution in the original protocol, and update
the parameters of "virtual user" in each epoch timely to ensure its
accuracy. The experimental results here prove that our intuition
and proof are correct, that the performance of this "virtual user"
neural network should be the same as real users’ local model.

7.2.1 "Too big" weight value setting. Figure 2 shows the rela-
tion of weights value and performance of the "virtual user" neural
network. Here we show the precision of the model when the plat-
form maliciously gives users different values of "too big" weights.
Here we can see, as the "too big" weights increase, the "virtual
user" model accuracy first increases and then decreases. It is easy to
understand, because at the beginning the "too big" weights are very
small, the difference of "virtual user" model and real user model
is very large. Distributed training cannot get very accurate model.
as the "too big" weights increase, the "virtual user" model starts to
be similar to the real user model. The accuracy of the distributed
training model will be greatly improved. Finally, when the "too
big" weights come to a certain level, as we known, weights ini-
tialization must meet unique distribution to ensure the training
convergence reliable. But obviously now the weights are no longer
normal distribution and cause gradients explosion, training process
can’t converge. "virtual user" attack starts to go wrong.

7.2.2 "Too big" weight proportion setting. Then we examine
the effect of "too big" weights proportion in all weights on the
accuracy of "virtual user" attack. Figure 3 shows the relation of
weights proportion and performance of the "virtual user" neural
network. Here we can see that as the proportion of "too big" weights

6



(a) MNIST dataset (b) Fashion-MNIST dataset (c) notMNIST dataset

Figure 2: The relation of "too big" weights value and accuracy. The horizontal ordinate is the order ofmagnitude of ourweights,
not the exact value. We sample the data from normal distribution of mean value of it. Because the Fashion-MNIST dataset is
more complicated thanMNIST, the training process collapse quicker thanMNIST. The scales of each graph are different beause
we want to display the collapse point of every dataset. We can see as the dataset is more complicated, the collapse will becomes
quicker.

(a) MNIST dataset (b) Fashion-MNIST dataset (c) notMNIST dataset

Figure 3: The relation of "too big" weights proportion and accuracy.

in all weights increases, the model accuracy becomes higher. It’s
consistent with our reasoning. Because the proportion of "too big"
weights was too small at the beginning, "virtual user" model was
different from the user’s local model, the model accuracy was defi-
nitely low. However, as the proportion of too big weight becomes
larger, "virtual user" model and the real user’s model become more
similar.

7.2.3 Bias setting. We test the effect of different bias values on
the accuracy of "virtual user" attack. Figure 4 shows the experiment
result. As we can see, since the proportion of bias in all parameters is
too small, changing bias cannot guarantee the "virtual user" model
similar to the real user’s local neural network, the model is of poor
accuracy eventually.

7.2.4 Architecture setting. We examine the influence of the neu-
ral network depth on the accuracy of "virtual user" attack. Figure 5

shows the experiment result. Here we can see, with the depth of
the neural network increasing, the "virtual user" attack accuracy
will gradually decrease. It’s consistent with our deduction. Because
the attack precision and the weights of each layer have a positive
correlation.

7.2.5 Effect on real users’ model. We can see our "virtual user"
and the imposed "too big" weight have an effect on real users’
training. From above experimental results show some questionable
collapses, namely sometimes the model accuracy becomes 10% or
less. Because the training convergence of neural network has some
strict requirements. We believe we can try more appropriate "too
big" weight to avoid this collapse as much as possible.

The training time of real users becomes longer due to the par-
ticipation of "virtual user", as in Figure 7. In our experiment, when
we construct 2 real users to perform distributed training on MNIST

7



(a) MNIST dataset (b) Fashion-MNIST dataset (c) notMNIST dataset

Figure 4: The relation of bias value and accuracy. The horizontal ordinate is the order of magnitude of our bias, not the exact
value. We sample the data from normal distribution of mean value of it. Bias has very little influence on our model accuracy.

(a) 2 layers (b) 4 layers (c) 6 layers

Figure 5: The relation of network depth and accuracy.We notice that the 4-layer neural network will crash more slowly with
the increase of "too big" weight. Therefore, in order to fully show the experimental results, we set the order of magnitude of
1 on the 2-layer and 6-layer networks and order of magnitude of 2 on the 4-layer network.

dataset, the participation of "virtual user" will increase the time
consumption even more than 3 real users collaboratively train. We
can easily understand it because our "too big" weight can make the
model hard to converge. But we can choose some appropriate value
to conceal our attack.

7.3 Deal with deep architecture
We emphasize that although the attack accuracy will decrease with
the increase of network depth, according to our previous proof of
feasibility, when weight noise is closer to the network output side,
the impact on the accuracy is lower. we can improve the attack
accuracy by adjusting "too big" weights related to the network
output side. For example, "too big" weights close to the output side
are set to a larger number, and which far from the output side are
set to a smaller number. This can effectively reduce the impact of

network depth and improve the accuracy of attack. Figure 6 shows
the experiment verification of our deduction.

7.4 Multi-users attack
We examined the effect of users number on "virtual user" attack.
We find that the number of users does not have much influence
on our attack, which indicates that our attack is universal and can
be applied to large-scale scenario in practice. Table 2 shows the
experiment result of different user numbers.

Table 2: Attack accuracy on MNIST

users number 2 5 10
"virtual user" 97.39% 97.12% 97.54%
real user 98.21% 98.12% 98.03%

8



(a) MNIST

(b) Fashion-MNIST

Figure 6: The relation of weights value choice and accuracy. The weights that have different distances from the output are set
differently. The left figure shows that when "too big" weight is close to output, we set it to a smaller value. The right figure
shows that when "too big" weight is close to output, we set it to a larger value. We find that the accuracy of the model on the
right was higher than that on the left. Although the improvement of performance is too trivial to see, we believe that we can
get higher advance in more smart weights choice.

Figure 7: The attack effect on real users’ training. The y-axis
is the training time, the x-axis is the dataset.

7.5 GAN and "finetune" defense
We apply the GAN method to obtain the user’s sensitive data. Fig-
ure 8 shows the image of the user’s dataset, and then we applied
finetune defense to defend the attack.

First, we reduce the pixels in user’s dataset image, then use
the data for distributed training. The users should finetune the
model obtained after training on the original dataset to meet their
requirements. We find that since the model only requires a small
amount of time in the local finetune process, this kind of defensewill
not significantly increase the time cost. The experimental results
prove our previous idea. Because such a training dataset is not the
original dataset, but reduces the pixel value, the "virtual user" attack
method can not get accurate model. This defense makes GAN not
able to produce reliable data, so as to make the attack not effectively
implemented.

We can see that the user’s sensitive data was clearly obtained
with "virtue user" attack at the beginning. As we apply finetune
defense, the clarity of images we obtained began to decline. When

9



(a) MNIST

(b) Fashion-MNIST

(c) not-MNIST

Figure 8: This is GAN attack and "finetune" defense on MNIST, Fashion-MNIST and notMNIST. The first row is real data. We
can see that at the second row we used the "virtual user" attack and GAN method to get the user’s sensitive data very clearly.
But as we applied the "finetune" defense, the clarity of image we obtained began to decline, as the third row shows. When our
defense reached a certain intensity, the obtained image cannot be distinguished in the last row.

our defense reachs a certain intensity, the image could not be dis-
tinguished. Here we emphasize that although the finetune defense
can lead to a certain increase in training time, in our experiment, it

only takes a little time to achieve a good defense effect. Therefore,
the "finetune" defense is feasible.

7.5.1 Time consuming. We also look at the time cost of the
finetune defense in Figure 9. We find that it takes only a little time

10



in all of our training process. Our experimental results show that
when the time consumption of finetune defense reachs a certain
degree, our defense approach could achieve a satisfactory effect.
This shows our defense is feasible.

Figure 9: The finetune defense effect on real users’ training.
The y-axis is the training time, the x-axis is the dataset.

8 DISCUSSION
Our experiments have confirmed that "virtual user" attack is feasible,
but there are still some deficiencies. In this paper, we prove that
the attack accuracy has certain error, and we deduce the upper
bound of error. We find that the error is related to the depth of
the neural network. As the depth of the neural network increases,
our attack error will also increase. This makes it difficult for us to
carry out attack on very deep neural network models. However,
we also proved that the error of attack is related to our "too big"
weights selection, and the error caused by "too big" weights near
the output side is relatively small. Therefore, we emphasize that
we can implement more accurate attack with smarter parameter
selection method.

In the process of training, we find that the neural network model
will bring the problem of convergence instability due to the attack.
Because we impose some outer parameters in the attack, which will
cause occasional collapse in distributed training, for neural network
convergence needs the parameters to meet unique distribution.
This situation may cause users to distrust the platform, which is a
blow to the company’s credibility. However, we can optimize the
selection of attack parameters to meet the need of neural network
convergence.

In our experiments, although our "too big" weights are somewhat
large, users may find anomalies in information transmission and
take some preventive measures. For example, setting the threshold
of the transmission parameter to truncate the abnormal parameters.
But as far as we know, the current commercial platform does not
provide this service, so our experiment warns these companies, hop-
ing that these companies can monitor the information transmitted,
to be fair to users and achieve privacy protection.

In our attack scenario, we assume that a malicious platform can
know the users’ local neural network structure, and launch the
attack based on this known information to obtain the users’ pri-
vacy. Although there are ways users can make it impossible for the

platform to know the exact network structure, in the current com-
mercial application the platform can obtain the network structure
of users. In the research field, the attack methods proposed by some
researchers are also based on the assumption of the known network
structure to the platform. Therefore, the attack we proposed is of
practical significance.

In our experiment, "virtual user" attacks impose a large num-
ber of "too big" weights on users. In previous papers, the author
proposed a "random selection of parameters" algorithm to achieve
privacy protection purpose, which seems to gain some protection
against our attack. However, on the one hand, in the process of
downloading and uploading parameters, too few parameters and
too random selection algorithm will reduce the accuracy of model,
so in actual deployment, users will often obtain as many parameters
as possible to ensure the stability of training. On the other hand,
We prove in the above experiment that our attack does not need to
impose all the parameters "too big" weights, but only needs a part
to achieve high precision. This result ensures that our attack can
be carried out successfully even if the users only select a part of
the parameters downloaded.

In recent years some people are working on methods to make
neural network parameters completely encrypted during commu-
nication, so as to protect users’ privacy. However, we emphasize
that current encryption methods, such as secure multiparty com-
putation, homomorphic encryption and differential privacy, cannot
be applied in real scenario due to the large number of parameters
and the need of high communication accuracy during training.
Therefore, we emphasize here that the attack we propose is fully
achievable.

9 CONCLUSION
In this paper, we show potential data leakage threat in distributed
training, and our experiments prove that we can apply this attack
to obtain the user’s sensitive data. Our work shows that there is
still a lot of risks in distributed training, which is a warning to
Google, Amazon and other commercial companies to launch the
deep learning method service.

In the future work, we believe which can be improved is that
people may conveniently encrypt the information through com-
munication, so that the accuracy and efficiency can be balanced in
practical application. We can also find out more security risks and
propose some methods to prevent them from happening.

REFERENCES
[1] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-

preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security, 13(5):1333–1345, 2018.

[2] Michael Backes, Pascal Berrang, Mathias Humbert, and Praveen Manoharan.
Membership privacy in microrna-based studies. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 319–330.
ACM, 2016.

[3] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1322–1333. ACM, 2015.

[4] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas
Ristenpart. Privacy in pharmacogenetics: An end-to-end case study of personal-
ized warfarin dosing. In USENIX Security Symposium, pages 17–32, 2014.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

11



[6] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under
the gan: information leakage from collaborative deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 603–618. ACM, 2017.

[7] Augustus Odena. Semi-supervised learning with generative adversarial networks.
arXiv preprint arXiv:1606.01583, 2016.

[8] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[9] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016.

[10] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 1310–1321. ACM, 2015.

[11] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship inference attacks against machine learning models. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 3–18. IEEE, 2017.

[12] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learn-
ing models that remember too much. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 587–601. ACM,
2017.

12



A SYSTEM ARCHITECTURE

Table 3:MNIST

input→(1)→ ... →(10)
(1). nn.Conv2d()
(2). nn.ReLU(max_pool2d)
(3). nn.Conv2d()
(4). nn.ReLU(max_pool2d)
(5). nn.Linear()
(6). nn.ReLU
(7). nn.Linear()
(8). nn.ReLU
(9). nn.Linear()
(10). logsoftmax

Table 4: Fashion-MNIST

input→(1)→ ... →(12)
(1). nn.Conv2d()
(2). nn.ReLU(max_pool2d)
(3). nn.Conv2d()
(4). nn.ReLU(max_pool2d)
(5). nn.Linear()
(6). nn.ReLU
(7). nn.Linear()
(8). nn.ReLU
(9). nn.Linear()
(10). nn.ReLU
(11). nn.Linear()
(12). logsoftmax

Table 5: notMNIST

input→(2)→ ... →(14)
(1). nn.Conv2d()
(2). nn.ReLU(max_pool2d)
(3). nn.Conv2d()
(4). nn.ReLU(max_pool2d)
(5). nn.Linear()
(6). nn.ReLU
(7). nn.Linear()
(8). nn.ReLU
(9). nn.Linear()
(10). nn.ReLU
(11). nn.Linear()
(12). nn.ReLU
(13). nn.Linear()
(14). logsoftmax

Table 6: Generator architecture

(1). input(latent sample)
(2). nn.Conv2d()
(3). nn.ReLU()
(4). nn.Conv2d()
(5). nn.ReLU()
(6). nn.Linear()
(7). nn.Tanh
(8). output(image)

13


	Abstract
	1 Introduction
	2 Related work
	2.1 Distributed training
	2.2 Machine learning privacy
	2.3 Generative adversarial network

	3 Background
	3.1 Deep learning
	3.2 Distributed Privacy-Preserving Deep Learning
	3.3 GAN attack method

	4 "virtual user" attack
	5 proof of attack feasibility
	6 "finetune" defense
	7 Experiment
	7.1 Experiment Setup
	7.2 "Virtual user" attack
	7.3 Deal with deep architecture
	7.4 Multi-users attack
	7.5 GAN and "finetune" defense

	8 discussion
	9 conclusion
	References
	A SYSTEM ARCHITECTURE

