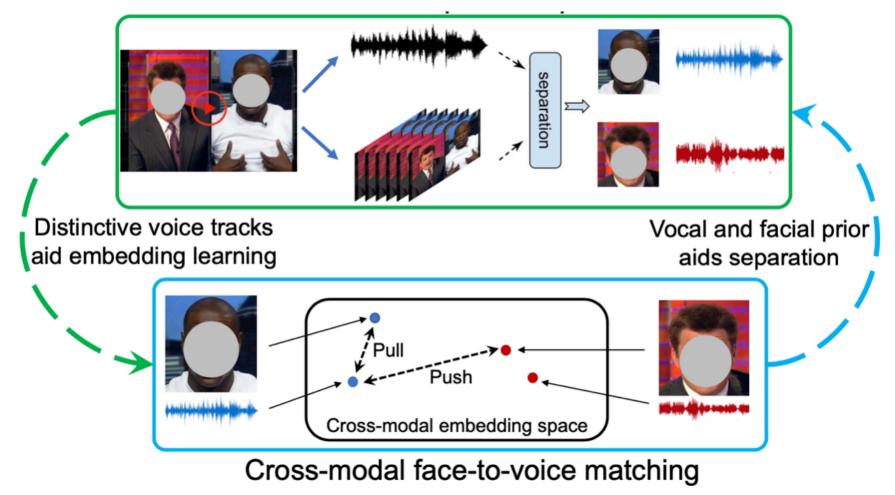
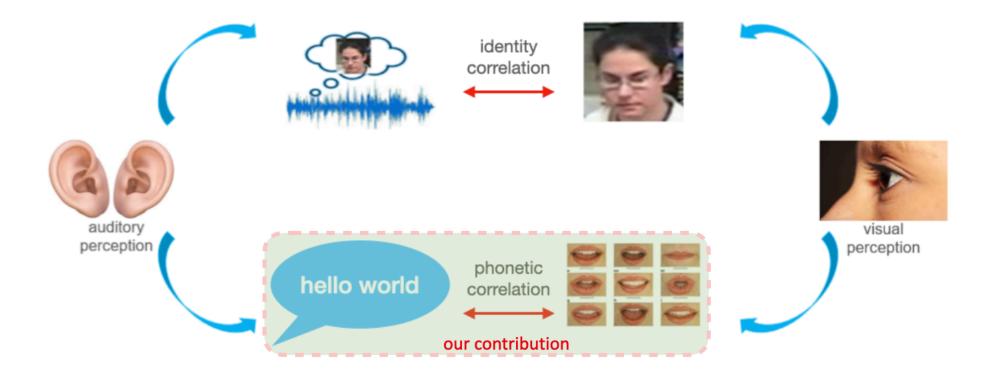

Multi-Modal Multi-Correlation Learning for Audio-Visual Speech Separation

Xiaoyu Wang^{1,2}, Xiangyu Kong², Xiulian Peng², Yan Lu² ¹Xi'an Jiaotong University ²Microsoft Research Asia

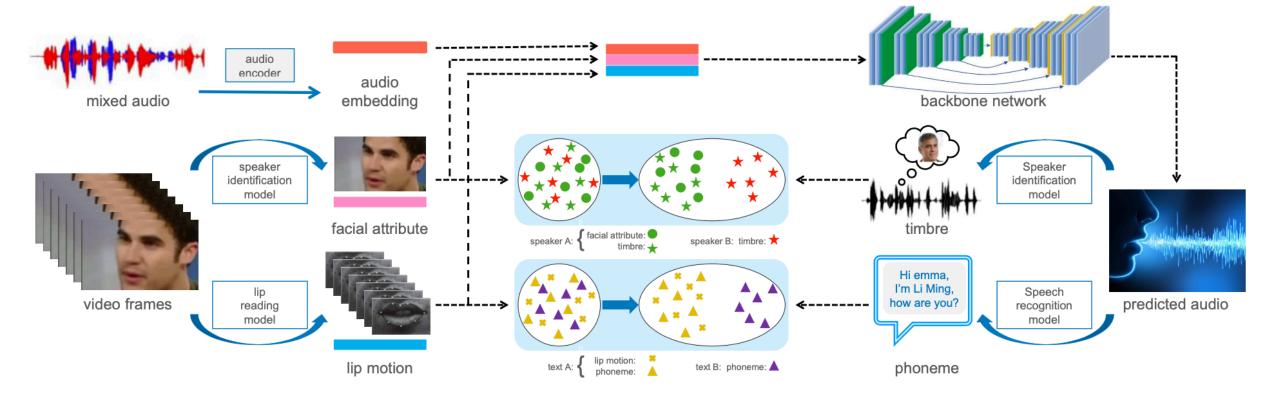

Audio-Visual Speech Separation

 Given the mixed audio and target speaker's visual features, our goal is to separate the target speaker's voice

Previous Work


• VisualVoice^[1]:explicitly model the audio-visual identity correlation

[1] R. Gao and K. Grauman. "VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency". In CVPR 2021.


Audio-Visual Correlations

 Besides modeling the speaker identity, we propose to explicitly model the phonetic correlation between the audio (phoneme) and video (lip motion)

Pipeline

Correlation enhancement in embedding space

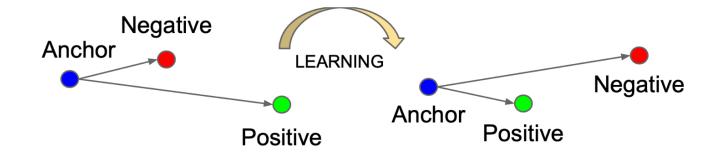
Learning Methods

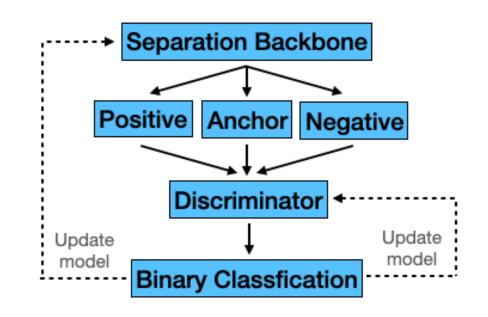
Contrastive learning

Triplet loss:

Define a triplet (positive, anchor, negative), pull the positive and anchor closer, and push the negative and anchor farther away.

$$\mathcal{L}_1 = \max\{d(\mathbf{i}_{\mathcal{A}_1}^a, \mathbf{i}_{\mathcal{A}_2}^v) - d(\mathbf{i}_{\mathcal{A}_1}^a, \mathbf{i}_{\mathcal{B}}^v) + m, 0\}$$


 $\mathcal{L}_2 = \max\{d(\mathbf{p}_{\mathcal{A}}^a,\mathbf{p}_{\mathcal{A}}^v) - d((\mathbf{p}_{\mathcal{A}}^a,\mathbf{p}_{\mathcal{B}}^v) + m, 0\}$


Adversarial learning

Limitation of triplet loss:

When using cosine distance, the magnitude of vectors is not taken into account, while merely their direction information is included.

$$\mathcal{L}_{\mathcal{G}} = \min_{G} \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{v}} \log(D(\mathbf{x})) + \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{a}} \log(1 - D(\mathbf{x}))$$
$$\mathcal{L}_{\mathcal{D}} = \max_{D} \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{v}} \log(D(\mathbf{x})) + \mathbb{E}_{\mathbf{x} \sim \mathbf{i}^{a}} \log(1 - D(\mathbf{x}))$$

Experiment

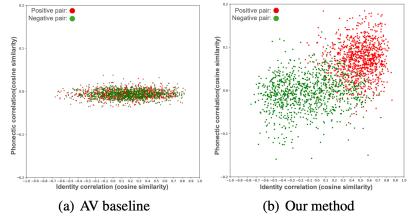
• LRS3 Dataset^[3]

VoxCeleb2 Dataset^[4]

	SDR	PESQ	STOI
[2](AV Baseline)	8.46	2.27	0.843
[2](CMC loss)	8.85	2.39	0.854
Ours(AV baseline)	9.392	2.536	0.851
Ours(triplet)	9.623	2.545	0.855
Ours(adversarial)	9.982	2.584	0.861

	SDR	SIR	SAR	PESQ	STOI	SI-SNR
[1](Reported)	10.2	17.2	11.3	2.83	0.87	-
[1](Released)	7.023	13.708	9.546	2.569	0.792	6.471
[1](Our impl.)	7.692	14.347	10.195	2.579	0.791	7.467
Ours(triplet)	8.178	14.692	10.38	2.6	0.793	7.676
Ours(adversarial)	8.949	16.012	10.79	2.687	0.811	8.477

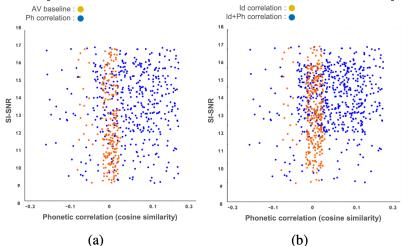
[1] R. Gao and K. Grauman. "VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency". In CVPR 2021.


[2] N. Makishima, M. Ihori, A. Takashima, T. Tanaka, S. Orihashi, and R. Masumura, "Audio-visual speech separation using cross- modal correspondence loss". In ICASSP 2021.

[3] T. Afouras, J. S. Chung, A. Zisserman LRS3-TED: a large-scale dataset for visual speech recognition arXiv preprint arXiv:1809.00496

[4] J. S. Chung*, A. Nagrani*, A. Zisserman VoxCeleb2: Deep Speaker Recognition INTERSPEECH, 2018.

Analysis


Identity&phonetic correlation before/after training

(a) AV baseline: without correlation learning.

(b) Our method: after joint identity & phonetic correlation learning.

Separation metric after phonetic correlation learning

(a) AV baseline vs. learning phonetic correlation (Ph).

(b) Learning identity correlation (Id) vs. jointly learning

both identity and phonetic correlation (Id+Ph).

Conclusion

- Contribution:
 - We explicitly model the phonetic correlation between audio (phoneme) and video (lip motion)
 - An adversarial training approach to learn identity and phonetic audio-visual correlation
- Future Work
 - We target at directly learning correlated audio-visual representations and apply it to downstream tasks

Thanks!